Bidirectional Residual LSTM-based Human Activity Recognition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Named Entity Recognition with Bidirectional LSTM-CNNs

Named entity recognition is a challenging task that has traditionally required large amounts of knowledge in the form of feature engineering and lexicons to achieve high performance. In this paper, we present a novel neural network architecture that automatically detects wordand character-level features using a hybrid bidirectional LSTM and CNN architecture, eliminating the need for most featur...

متن کامل

Deep Residual Bidir-LSTM for Human Activity Recognition Using Wearable Sensors

Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architecture using residual bidirectional long short-term memory (LSTM) cells is proposed. The advantages of the new network include that a bidirectional connection can concatenate th...

متن کامل

Graph-based Dependency Parsing with Bidirectional LSTM

In this paper, we propose a neural network model for graph-based dependency parsing which utilizes Bidirectional LSTM (BLSTM) to capture richer contextual information instead of using high-order factorization, and enable our model to use much fewer features than previous work. In addition, we propose an effective way to learn sentence segment embedding on sentence-level based on an extra forwar...

متن کامل

Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition

In this paper, we carry out two experiments on the TIMIT speech corpus with bidirectional and unidirectional Long Short Term Memory (LSTM) networks. In the first experiment (framewise phoneme classification) we find that bidirectional LSTM outperforms both unidirectional LSTM and conventional Recurrent Neural Networks (RNNs). In the second (phoneme recognition) we find that a hybrid BLSTM-HMM s...

متن کامل

Towards Online-Recognition with Deep Bidirectional LSTM Acoustic Models

Online-Recognition requires the acoustic model to provide posterior probabilities after a limited time delay given the online input audio data. This necessitates unidirectional modeling and the standard solution is to use unidirectional long short-term memory (LSTM) recurrent neural networks (RNN) or feedforward neural networks (FFNN). It is known that bidirectional LSTMs are more powerful and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer and Information Science

سال: 2020

ISSN: 1913-8997,1913-8989

DOI: 10.5539/cis.v13n3p40